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Strength of Cylinders 

New design methods are described here for meeting problems of fatigue 
and creep imposed by higher temperatures and Auctuating loads 

T HE CHEMICAL INDUSTRY has greatly 
increased the importance of correct 
design for pressure containers. The 
combined effects of such factors as corro­
sion, high temperatures, and fluctuating 
loads have raised the demands beyond 
those which can be met by straightfor­
ward interpretation of ordinary theo­
retical methods. Unfortunately, with 
problems of this kind, designers have too 
often resorted to empirical formulas of 
doubtful validity, sometimes with dis­
astrous consequences. Nevertheless, 
many of these difficulties can be resolved 
by slight extensions and modifications of 
conventional methods. Although only 
cylinders are considered here, it is be­
lieveii that these ideas can be applied to 
other shapes and conditions. 

General Considerations 

Figure lA shows a section through 
half of a cylinder subjected to an internal 
pressure of Pi and an external pressure of 
p.. The suffix. represents conditions at 
the external surface and , those at the 
internal, and for stresses and strains, 
suffixes., " and • represent those in the 
radial, tangential or hoop, and axial 
directions, respectively. Figure lA 
shows that the total force tending to push 
a unit axial length of the cylinder up is 
2r,Pi • A similar downward force of 

2roPo arises from the external pressure. 
The difference between these must be 
balanced by the tangential stress in the 
cylinder wall, and because this is not 
normally constant across the section, the 
general condition of stability must be 

iT. 
2 II dT = PiD, - P.D. 

T, 
(1 ) 

where D. and D, are external and 
internal diameters, respectively. 

When wall thickness (t) is small com­
pared with diameter, the tangential 
stress across it is virtually constant, and 
neglecting the external pressure, Equa­
tion 1 reduces to 

I - P,D, 
I--U (2) 

which is the commonly used "thin tube 
formula." 

The section in Figure lA can also be 
regarded as a thin elemental ring of a 
larger, thicker cylinder by writing r and 
T + or for r, and ro, andf. andf. + of. for 
P, and Po. The tangential stress can 
then certainly be considered constant 
across the thin radial extent of or. It is 
convenient in subsequent analysis to 
consider all stresses as tensile, whereupon 
those that are compressive will appear 
with a negative sign. Thus, Figure lA 
can be transposed as shown in Figure lB, 

and the equation of static equilibrium 
simplifies in the limiting condition to 

I,-I.=r dlr 
dr 

(3) 

Since f, and f. are principal stresses, 
their difference is twice the maximum 
shear stress in that plane. Normally f, 
is tensile and f. compressive with the 
axial stress usually much smaller numeri­
cally than either; therefore, the two 
former lie in the plane of greatest shear 
stress. If S is this shear at radius r, then 

I, - Ir = 2S 

and 

(4) 

which can be integrated to give 

iT. 
P, - Po = 2 (S/T).dT 

Ti 

(5) 

These considerations have assumed 
only geometrical symmetry; therefore, 
the equations derived are true for any 
material, elastic, or plastic or of any inter­
mediate condition. This becomes im­
portant because any cylinder problem 
can be solved with Equation 4 if dis­
tribution of shear stress across its section 
is known. 
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over-all axial strain,· y, for a vessel of L 
·leIlgth is 

P L(1 - 2c) 
Y=F; · K'-1 (14) 

In each case these refer to vessels which 
support their own end loads. 

Figure 1. Section of half a cylinder 

In an actual test on a reaction vessel 
done in 1939, the dimensions were 80 
inches in over-all length and 71/ 2 and 
113/4 inches for internal and external 
diameters, respectively. The material 
was a heat-treated nickel-chrome-molyb­
denum steel having, in pounds per sq. 
inch, an ultimate strength of approxi­
mately 125,000, a yield of 103,000, and 
Young's modulus and Poisson's ratio of 
approximately 28.0 X 106 and 0.3, 
respectively (Table I) . Closer agree­
ment cannot be expected, especially 
because the formulas involve Poisson's 
ratio, which is not usually known with 
great accuracy. 

A. Subjecte d to internal a nd externa l pressures 
Pi a nd Po, resp ectively 

Elastic Conditions 

This is the one case that can be 
completely solved analytically, and the 
resulting solution is of direct utility. 
It is generally called Lame who was 
probably the first to evolve it. The 
ensuing analysis is dealt with in most 
textbooks (76, 26) and leads to the 
following general results for the stresses 

f, = - Poro~ + P.r.' + (Po - Pi)ro'r;'/r' (7) 
To2 - Ti2 

T he value of fa is indeterminate without 
further knowledge of the end conditions, 
but it must be constant across the section. 
For a · cylinder with end covers attached 
to the walls so that the end load has to be 
Carried by the axial stress in the cylindri­
cal portion, it is given by 

(8 ) 

O n the other hand, in the cylinder of a 
simple hydraulic press, end loads , are 
taken by the frame or columns and the 
axial stress is zero except for small 
forces arising from friction of the plunger, 

A further important relation is shear 
stress in the cross-sectional plane, which 
is half the algebraic difference between 
f, and f,- i ,e., 

f" fTl and S have their greatest'values 
at the inside surface. For most practical 
cases, external pressure can be neglected, 
and the formulas for maximum stresses 
set up by an internal pressure, P, are 
greatly simplified. Thus .. 

K' + 1 
!,(max,) = P K' _ 1 (to) 

fr(max.) = - P (11) 

S(max. ) (12) 

B. When considered a s a thin elementa l ring of 
a larger, thicker cylinder 

Here K is the ratio, To/ri, usually called 
the diameter ratio. 

T his last simplification shows inci­
dentally that these formulas involve only 
the ratio of the diameters or radii and 
not their absolute size: Thus, the 
principle of similarity applies and the 
theory gives no hint of scale factor. 

This analysis can be checked with 
reasonable accuracy because it permits 
the calculation of the external strains 
caused by a given ·pressure inside· a 
cylinder. Thus, the increase in external 
diameter, x, is 

P Do(2 - c) 
x = F;' K'- 1 (13) 

where E and c are Young's modulus and 
Poisson's ratio, respectively, and the 
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Application of the theory to design 

Table I. Strains in Actual Pressure 
Vesse l 

(At 34,000 lb./sq. in.) 
Inches 

Dimensional Change Calculated Observed 

Expansion of external 
diameter 0 . 0165 0.0170 

Longitudinal exten-
sion 0 . 0265 0 .0275 
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Figure 2. Point where overstrain begins, compared with bursting pressure for a 
cylinder of alloy steel having a tensile strength .of 137,000 pounds per square inch 
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problems needs further consideration, 
but even if some serious limitations are 
revealed, there is little doubt that the 
method can answer all questions arising 
from the intended use of cylinders for 
static pressures at temperatures below 
creep conditions. 

Stress Distribution in 
Elastic Cylinders 

Figure 3A shows the variation of radial, 
tangential, and shear stresses across the 
section of a cylinder whose diameter 
ratio is 4.5. Intensity of each rises 
abruptly to its peak value at 'the inner 
surface. Equations 6 and 7 also show 
that both steepness of the peak and 
difference between the highest and low­
est values decrease rapidly as the wall 
gets thinner; consequently, for small 
values of K, the thin tube formula. of 
Equation 2 can be safely used. 

Several other simplified formulas are 
also used from time to time, such as the 
"outside diameter formula" and the 
"mean diameter formula" which, as 
their names imply, consider pressures 
acting over a width equal in the first case 
to the outside diameter and in the second 
to the mean diameter. The correspond­
ing relations are, respectively, 

and 

I t = PD. 
2t 

( / f. = = ~ P(D. + D;) 
~ 4t 

(15) 

~ 
~~ 

Table II below shows the ratio of It to 
pressure for each case. Thus, the thin 
tube formula can be used safely up to a 
diameter ratio of 1 to 1. I-I.e., when the 
wall thickness is 5% of the bore diameter, 
but above this, the error exceeds 5% and 
gets rapidly worse as the wall is thick­
ened. Moreover, the error is on the 
side of danger. 

The outside diameter formula departs 
from the correct values initially at about 
the same rate, but it has the merit of 
erring on the side of safety. . The ~ean 
diameter formula, however, lS conslder­
ably better-less than 4% off for a thick· 
ness equal to 25% of the bore (K = 1.5). 
But other considerations are needed m 
that range, and none of the sim~lified 
theories should be used for cylmders 
exceeding a diameter ratio of 1 to 1.1. 

It is important that shear stress in a 
thick cylinder (Figure 3A) rises almost to 
the same value as the maximum tensile 
stress. The reason for this, of course, is 
that the other principal stress in that 
plane is compressive. By ~ompariso~ 
with a tensile test-most deslgn work lS 
still related to tensile/ tests-the ratio of 
shear to direct stress is much higher; 
in the tensile test it is only 50%. This 
implies that shear is probably a better 
basis for cylinder design . 

HIGH PRESSURE 

Table II. 

Ratio 
Thickness 

Comparison of Various Formulas 

ItlP by 

Diameter 
Ratio 

1.01 
1.05 
1.10 
1.5 
2.0 
3.0 
5.0 

~ It (max.)IP. 

to Bore. 
% 
0.5 % 
2.5 
5.0 

25.0 
50 

100 
200 

Application to Design 

Thin 
tube 

formula 

100.0 
20.0 
10.0 
2.0 
1.0 
0.5 
0.25 

This problem is best illustrated by 
reference to one of the numerous papers 
describing careful tests of thick cylind~rs 
up to the points where they overs~am. 
For instance, Cook (4) tested a senes of 
cylinders of a steel containing 0.21 % 
carbon and detected onset of overstrain 
by sensitive mirror extensometers. Ten­
sile tests (mean of three tests in each case 
with a maximum deviation of about 1 % 
from the mean) showed the material to 
have upper and lower yield stresses of 
52,300 and 38,300 pounds per sq. inch, 
respectively. Actual plots of diametral 
expansion against internal pressure as 
given by Cook show fa.irly sharp d~~ia­
tions from linearity WhICh allow cntical 
pressures t o be estimated with an ac­
curacy of at least 2%. 

Column 4 of Table III shows that 
maximum tensile stress cannot be the 
criterion of overstrain in these cylinders. 
The maximum shear stresses, however, 
are more consistent and range from 
28,200 to 30,060 with a mean value of 
29,300- i.e., a variation of 2.6% above 
and 3.7% below the mean. 

The maximum shear stress in the 
tensile specimens at their upper yield 
points was, however, 26,150 pounds per 
sq. inch; thus, direct comparison of the 
maximum shear stress in the two types of 
loading shows a deviation of more than 
10% . However, theoretical reasoning ~s 
well as an increasing volume of expen­
mental evidence supports the shear­
strain-energy hypothesis. This is usu­
ally associated with the names of von 
Mises, Hencky, or Huber, but Sopwith 

Outside 
diameter 
formula 

101.0 
21.0 
11.0 
3.0 
2.0 
1.5 
1.25 

Mean 
diameter 
formula 

100.5 
20.5 
10.5 
2.5 
1.5 
1.0 
0.75 

Exact 
formula~ 

100.5 
20.51 
10.52 
2.60 
1.667 
1.250 
1.083 

and Morrison (24) have recently shown 
that it was first propounded by Clerk 
Maxwell in 1856. According to this, 
overstrain of a cylindrical wall occurs 
when maximum shear stress reaches a 
value of 1/ 0 times the tensile upper 
yield stress; thus, yield in these cylinders 
would be expected when shear stress 
reached 30,200 pounds per sq. inch. The 
correlation is still not perfect, but the 
difference from the mean is now less than 
2Ih%. Because this is within the range 
of scatter for the cylinder results them­
selves, it is the best of the criteria so far 
put forward. . 

Therefore, the most satisfactory. baSIS 
of design is arranging for the maxlmum 
shear stress of the cylinder, as given by 
Equation 12, to equal (wl).en raised if 
required by an appropria:te. safety facto:) 
the tensile yield stress 'dIvIded by y'3. 
Thus, if the safety factor is A and the 
tensile yield stress (or selected p:o~f 
stress) is/., the required diameter ratio lS 

K = ~f. _/~P0 (17) 

For example, if a pressure of 1000 
atm. (14,700 pounds per sq. inch) has 
to be contained with the material of 
Cook's cylinders, allowing a safety 
factor of 1.5, what will the necessary 
diameter ratio be? Here I. = 52,300; 
P = 14,700; A = 1.5. Thus, K = 1.93. 
Consequently, if a 6-inch bore were 
required, the outer diameter would have 
to be just over 111/ 2 inches. The pr~s­
sure could then rise 50% above lts 
designed working value before the ve.'lSel 
became overstrained. 

Table III. Results of Pressure-Dilatation Experiments 

Dia. 
Ratio 

1.168 
1.167 
1.50 
2.0 
3.0 
4.0 

Int. Dia .• 
In. 

0.750 
0.750 
0.750 
0.37$ 
0.259 
0.250 

At Onset of Yield, Lb./Sq. In. 

Pressure 

7,560 
7,820 

15,680 
21,950 
26,620 
28,220 

Max. tang. 
stress 

49,280 
51,070 
40,760 
36,470 
33,350 
32,000 

Max. shear 
stress 

28,670 
29,610 
28,220 
29,280 
29,970 
30,060 
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Limitations of Simple 
Elastic Cylinders 

Having established that the most 
probable criterion of elastic breakdown 
in a cylinder is the shear-strain-energy 
hypothesis, it is desirable to take stock 
of the position as revealed by Equation 
12. If no safety factor is introduced, 
even when the cylinder is infinitely thick, 
there is a limiting condition where shear 
stress becomes numerically equal to 
pressure. In the example considered 
here, the absolute limit of pressure that 
could be contained without overstrain 
by a simple cylinder of this material is 
less than 30,200 pounds per sq. inch. 

This is a serious limitation but fortu­
nately there are several ways to overcome 
these restrictions. The key is provided 
by Figure 3A which shows that only a 
small proportion of the cylinder wall is 
highly stressed. Clearly, if a way could 
be found of making the outer layers take 

Compress i.e 
-; 

----------'!Io" 

-', , 
\ 
\ . 

\ 

\ 
\ 
\ 

a fairer share of the load, the pressure 
conta~ned could be greatly . increased. 
WheI). a cylinder of ductile material is 
loadep. to the point where overstrain 
begin~, it may require more than twice 
that pressure to burst it if the cylinder is 
thick ' (Figure 2); this again suggests 
ways of overcoming this limitation. 

Reinforcement of Elastic Cylinders 

In~reasing the load taken by the outer 
layer~ can be done in a number of ways. 
All i~volve the same basic principle­
namely, reinforcing a core tube either by 
shrinking other tubes over it, or by wind­
ing around it layers of continuous wire or 
strip. In this way, a residual tensile 
stress is developed in the outer layers and 
a corresponding compression in the core. 
And, when the pressure load is applied, 
compression in the core cancels out some 
resulting tensile stressing at the expense 
of increased tension in the lightly stressed 
outer layers. 

As previously stated, these problems 
ought to be considered from the stand­
point of shear stress. Thus, the core tube 
would be sheared in one direction of ro­
tation by the reinforcing layers, and in 
the reverse direction by the pressure 
load. Shear in the layers, on the other 
hand, is in the same direction from both 
causes, and the effect is therefore addi­
tive in ·the latter and partially counter­
acting in the former. 

Reinforcement by shrinking . is sus­
ceptible to accurate analytical : treat­
ment, and the resulting equaticf:ns indi­
cate ultimate limits of all , reinforcing 
techniques. Here, the analysis is fortu­
nately simplified if the problem is con­
sidered from the standpoint c;>f shear, be­
cause, as is seen in Equation 9, shear 
stress, unlike the radial and tangential 
stresses, is a function of the difference of 
pressures applied at the surfaces and is 
independent of their absolute values. 
Maximum shear stress in any cylinder 
from Equation 9 simplifies to 

Figure 3. Stresses for cylinders having a diameter ratio of 
4.5 to 1 

Tensi Ie A. Simple cylinder with internal pressure acting 
S. Ideal triplex cylinder with internal pressure acting 
C. Ideal triplex cylinder showing residual stresses ' , 
Stresses: shear --- hoop - - - - - radial - - - - -

A 

.; -

o \:L. -;;-0 -.l---::-2"-:. 0~.....L--:-3"-:. 0:--....1...:--:-4 L. O---,---L_-.J
5 

. 0 

OVE RA LL 0 I A ME TE R RA T I 0 (K). ,' 

Figure 4. Curves connecting PIS and K plotted , ~or different 
• 2(KI - 1) .... . 

values of n With the curve of PIs = K2 su,f,lenmposed 

At any point in the shaded area, residual stress exi:eeds ma~~mum working 
C 

stress i 
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(18) 

If now there are n components of which 
the first has a diameter ratio of kl' the 
second k2, and so on, a set of equations 
can be written for the shear stress in 
each, remembering that the contact 
pressure acting on the outside of one 
component is also that acting on the in­
side of the next. The solution of most 
problems of this kind then becomes a 
matter of suitably manipulating these 
equations. 

The ideal case is where the maximum 
shear stress in each component has the 
same value because it will then be a mini­
mum for the particular pressure, number 
of components, and over-all diameter ra­
tio. It has been shown by this analysis 
(13) that contact pressures between suc­
cessive components should decrease in 
arithmetic progression, and that contact 
radii should increase in geometric pro­
gression. If these conditions are substi­
tuted, a general equation is obtained in 
which S is given by 

P n(1(2'" - 1) 
S = JeI'" (19) 

where K is the over-all diameter ratio of 
the composite cylinder. Figure 3B shows 
the stress distribution of a triplex cylin­
der of the same diameter ratio as the 
simple cylinder shown in Figure 3A; 
and Figure 3C shows residual stresses 
in the same cylinder when the internal 
pressure is removed. 

The difference in dimensions needed 
to produce the required residual stresses 
on assembly can also be calculated. In 
fact the required shrinkage is given by 
the simple relation, 

v 2P 
T = TiE (20) 

for each contact surface. That is, the 
same interference per unit of diameter is 
required for each component, although 
in practice, when there are more than 
two, the assembly of extra components 
over those already mated will require 
higher temperature differences because 
of strains in the latter. 

Limits of Compound Construction 

Equation 19 has the virtue of showing 
at a glance what might be achieved un­
der extreme conditions--e.g., when the 
number of components and the over-all 
diameter ratio is large. Economic con­
siderations are always likely to limit the 
number of components in ordinary shrink 
construction to 3 or 4, but other methods 
of reinforcement such as strip or wire 
winding and multi-layer construction 
can be regarded as essentially similar in 
principle and, therefore, capable of in­
vestigation by the same formula. 

Equation 19 states that maximum 
shear stress in each layer is the same. 
Moreover, the thinner the layer, the less 
the difference between maximum and 
minimum shear stress; in other words it 
will be more even across the wall. Con­
sequently, as the number of layers be­
comes great, the condition is approached 
where shear stress is constant throughout. 
It is then easy to integrate Equation 5 
and show that 

P = 2 Slog, K (21) 

This is in fact the limiting form of Equa­
tion 19 as n approaches infinity. 

Equation 21 shows that theoretically 
an infinite pressure can be contained, if 
there is both infinite thickness and an in­
finite number of components. Also, 
the shrinkage required is then zero 
(Equation 20) . This implies that the 
larger the number of components, the 
smaller the required shrinkage to reach 
the ideal condition of stress distribution. 
Moreover, the further condition of geo­
metrical similarity of the components 
becomes less important as the number of 
layers becomes large; in fact it has been 
shown (13) that Equation 19 can be used 
to predict quite closely the elastic limit 
of cylinders constructed by the A. O. 
Smith Corp.'s multi-layer process. Ves­
sels of this kind were tested to destruction 
under carefully controlled conditions by 
Jasper and Scudder (8) and their results 
conform well with this theory. 

Here, the shear stress criterion has been 
applied to these newer forms of construc­
tion, whereas normal practice has gen­
erally been-certainly for wire winding­
to base design on tension in the layers. 

Stresses caused by the shrinkage proc­
ess before the pressure load comes on 
are often overlooked in design problems 
of this kind. Their evaluation, however, 
is simple (15) because they are merely 
the differences between stresses in the 
compound cylinder under the working 
pressure and those in a simple elastic 
cylinder of the same dimensions under 
the same pressure. This applies to direct 
as well as shear stresses. The limiting 
case where maximum residual shear 
stress just equals the maximum working 
stress is given by 

n(1(2'R - 1) 2(K2 - 1) (22) 
1(2/R = 1(2 

This is easily taken into account in de­
sign by constructing a diagram (Figure 4) 
in which a family of curves connecting 
PIS and K is plotted for different values 
of n with the curve of 

P 2(/(2 - 1) 
S = KI 

superimposed upon them. Then at any 
point in the shaded area of Figure 4, the 
residual shear stress exceeds the designed 

HIGH PRESSURE 

working stress, and any point on the 
boundary curve represents the condition 
that maximum shear stress under load is 
exactly equal and opposite to that exist­
ing when the load is removed . For any 
value of n greater than 2, there is a unique 
value of K that enables this condition to 
be achieved. When n = 3, this value is 
nearly 4.5; therefore, Figures 3, A, B, 
and C are for cylinders of that ratio 
and the value of PIS is then approxi­
mately 1.9. For larger numbers of com­
ponents, the critical diameter ratio is less, 
and the resulting PIS is correspondingly 
reduced. These considerations are 
hardly worth pursuing from a practical 
point of view, but it seems reasonable to 
conclude that it is unwise to specify a 
value of PIS greater than about 1.8 for 
design purposes. 

In practical shrink construction the 
effect of inevitable deviations from the 
exact dimensions specified, because of 
imperfections of machining and inspec­
tion, also have to be taken into account. 
This has been done (13) and with good 
modern workshop practice, it appears 
that maximum stress increases are un­
likely to exceed 10%. 

Reinforcement Methods 

Reinforcement by strip and wire 
winding, and also by the multilayer 
process has been mentioned. Several 
other variations of these have been pro­
posed, and the so-called "laminar con­
struction" described by Birchall and 
Lake (2) comes into this category. All 
have the common feature of a central 
core tube but differ in the way this is re­
inforced. The core tubes are generally 
thin-walled by comparison with the com­
plete cylinders; this is a valuable asset 
because they can be made of expensive 
corrosion resisting materials without se­
riously increasing the over-all cost. An-

' other and less satisfactory common fea­
ture is the need to pay special attention to 
carrying axial forces. 

Each method raises problems of its 
own, but there has been so much diversi­
fication that only an outline of the sub­
ject can be given here. On this basis, 
the laminar construction is a special case 
of elastic cylinders-or for higher pres­
sures, possibly of autofrettage--but the 
others can be surveyed from the view­
point of the shrink construction theory. 

The wire-winding process was in regu · 
lar use for many years for reinforcing 
large guns, but its great drawback was 
that the wire does nothing to help in car­
rying the longitudinal stresses. Never­
theless, where the core tube can do this 
safely, it is an easy and relatively cheap 
form of reinforcement. Newitt (79) has 
used it for small vessels carrying very 
high pressures. Usually, the design is 
based on having all the strands in equal 
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tension when the iaternal pressureload is 
acting. Specifying this tension for each 
layer is complicated by the fact that 
outer layers, as they are wound on, tend 
to reduce tension in the inner ones. 

Strip-winding is also a well established 
practice which, when the strip is flat, in­
volves the same design considerations as 
wire-winding. In 1 t:J38, however, Schier­
enbed (27) in Germany used a strip of 
W section and wound it so that each suc­
cessive layer interlocked with the one be­
low it. This has been successful, and it 
is even possible to thicken the ends with 
extra windings, and to drill and tap the 
resulting material for studs, as if it were 
an integral flange . Theoretical and 
practical aspects of this development 
have been dealt with by Siebel and 
Schwaigerer (23) . Different materials 
for different layers can be Ui~ed, and the 
process seems to have possibilities with 
the only condition being that all materi­
als of construction must be weldable be­
cause each layer has to be anchored by 
welding. 

One difficulty for the designer results 
from an interlocking effect which gives 
rise to longitudinal stresses of indetermi­
nate magnitude and direction. How­
ever, the safest guide for the designer is 
that provided by the shrink construction 
theory-i.e., use a PIS ratio of 1.6 to 1.8, 
base the design only on windings, and 
ignore tube strength. 

With multilayer construction more 
reliable data is availabie (8). Further­
more, as shown (13), the assemblies be­
have much as though they were built 
from separately machined tubes shrunk 
together, and yield at pressures only a few 
per cent below those calculated for ideal 
conditions. Attaching ends and, for 
long cylinders, making intermediate 
joints must be done by welding. This 
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Figure 5. Internal applied pressure 
ploned against resulting changes in 
outside diameter 

has been the occasional cause of weak­
ness in the past, but presumably, these 
difficulties have been overcome by mod­
ern welding techniques. 

The laminar construction (2) consists 
of reinforcing a thin core tube by slipping 
over it a large number of relatively thin 
rings. The end loads are then carried 
separately by an external portal frame, a 
procedure which could be applied 
equally well to a wire wound vessel. This 
method has been particularly useful for 
raising the pressure-carrying capacity of 
existing equipment. The strength of the 
assembly, so far as radial pressures are 
concerned, can be approximated by neg­
lecting the core tube and treating the 
pile of rings as an dastic cylinder. The 
design of the portal frames can then be 
worked out according to the usual meth­
ods for such structures. 

All these constructional methods and 
others of simil~r type have the advan­
tage, where large sized cylinders are con­
cerned, of avoiding heavy and costly 
forgings, and facilitating inspection. 
They are also generally cheaper than 
construction by shrinking a number of 
components, because the accurate ma­
chining and gaging of large components is 
avoided. For these reasons they are es­
sentially processes for large-scale equip­
ment. 

Ultimate Strength of Cylinders 

Pressure required to burst a cylinder of 
ductile material is much greater than 
that which first causes overstrain (Figure 
2). Furthermore, the thicker the cyl­
inder, .the greater this difference. Also, 
the cylinder swells considerably in girth 
before it fails, although its length 
changes little. Thus, radial and tan­
gential strains are large but the longitu­
dinal strain is small and, because metals 
in the plastic state deform without change 
of density, the cross-sectional area must 
remain substantially constant. Equation 
5 shows that the whole problem can be · 
solved if variation of shear stress across 
the wall is known, assuming it to be'sym­
metrically distributed with respect to the 
central axis. . 

Because expansion is a constant area 
process, however, all strains across a sec­
tion can be evaluated. The reasonable 
assumption (which the outcome seems to 
justify) that the relationship between 
shear stress and shear strain is always the 
same for a given material, no matter how 
the strains are caused-e.g., by tension, 
torsion, or bending-implies that the 
whole problem can be solved if the ap­
propriate curve of shear stress and strain 
is available. This curve can most con­
veniently be derived from a torsion test. 
The actual process of derivation is given 
by Nadai (1{J) and the details of applying 
it to the cylinder problem are described 
by Manning (12). By thus computing 
pressures required to cause various as-
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sumed deformations, a maximum is ob­
tained which must represent the ultimate 
bursting pressure of the cylinder. 

Experimental determination of burst­
ing pressures is more difficult than might 
be expected, mainly because the large 
deformation that must occur before the 
minimum bursting pressure conditions 
are reached takes considerable time. If 
pressure is raised too quickly, the speci­
men will burst at a pressure as much as 
50% above that which would eventually 
cause failure if maintained for long 
enough. With care, however, consistent 
results can be obtained, which generally 
agree with the values derived in the way 
indicated here. This is shown by experi­
mental work such as that of Faupel (6) 
and Crossland and Bones (5). 

Study of cylinders by their shear stress 
and shear strain properties is of consider­
able value in dealing with autofrettage 
and creep. It should be emphasized, 
however, that these stresses and strains 
are assumed always symmetrical about 
the center, whereas it has been conclu­
sively shown by Steele and Young (25) that 
this is seldom true for low carbon steels. 
Probably the same thing happens in any 
material in which there is an appreciable 
difference between the upper and lower 
yield stresses. This does not, however, 
affect the calculated bursting results, 
probably because when the whole wall 
is overstrained, the stress system again 
becomes symmetrical. 

Autofrettage 

The essential feature of this process is 
that it uses a part of the range between 
the overstraining and bursting pressures 
for the actual working pressure. It thus 
raises considerably the apparent strength 
of a simple cylinder without introduc­
ing the complications and cost of com­
pound construction. 

The process is best explained by refer­
ence to a typical example (Figure 5) 
where the internal applied pressure is 
plotted against the resulting changes in 
outside diameter. From a to A the 
whole system is elastic and the line is 
therefore straight; moreover; if the 
pressure is removed, the diameter will re- . 
vert at once to its original size. At A, 
the elastic limit is reached at the inner 
surface, and the line bends over. If the 
pressure is reduced from a point such as 
B, the relation will follow a line BC 
which is more or less straight and parallel 
to aA, and when the pressure is reduced 
to zero, there will remain a permanent 
swelling in the diameter represented by 
ac. If the cylinder is then left for some 
time, it is probable that a slight con­
traction CC' will take place. On reap­
plying the pressure, the process will ,be 
represented by a line such as C'B', again 
substantially straight, but enclosing a 
slight hysteresis loop. When the pres­
sure approaches the highest; value 



reached in the previous loading-i.e., 
that represented by the point B-the line 
curves over again and proceeds along 
almost exactly the course it would have 
taken if the rise of pressure had not been 
interrupted. A range such as G'B' is 
sometimes referred to as induced elas­
ticity. 

This poses the question whether the 
working pressure could be raised to the 
value represented by say PQ? Al­
though this is well beyond the elastic 
limit of the original cylinder, it is only 
about 60% of the induced elasticity and 
less than half the ultimate bursting pres­
sure, X. The answer must lie in the sta­
bility and reproducibility of the system. 

Although the idea of operating with 
overstrained material was propounded as 
long ago as 1906 by Malaval, a French 
artillery designer, the first account of its 
practical development seems to have 
been that by Langenberg (9) in 1925. 
Then in 1930 there followed Macrae's 
(77) well-known treatise. He investi­
gated the effects of varying amounts of 
overstrain and of subsequent heat treat­
ment at relatively low temperatures on 
the stability of specimens overstrained by 
different kinds of loading, with particu­
lar reference to cylinders under internal 
pressure. He concluded that suitable 
heat treatment would remove any tend­
ency for elastic afterworking- Le., par­
tial recovery as represented by GG' in 
Figure 5-and would eliminate the hys­
teresis between descending and ascend­
ing curves and make them straight lines. 
He further suggested that after heat 
treatment, a line such as G'B' would con­
tinue straight to a pressure substantially 
greater than B, and he called this in­
crease the elastic gain (Figure 5, dotted 
line to E). 

The first essential to be remembered 
in considering the application of auto­
frettage is that the material overstrains 
symmetrically. In practice, this means 
that a curve like that shown in Figure 5 
must be obtained on each diameter. 
This is a considerable limitation, but it 
does not affect the use of metals such as 
gun steels which are the usual choice for 
high pressure equipment. There is also 
some doubt about the possibility of en­
tirely removing the hysteresis between 
successive applications of pressure. In 
fact its persistence is expected if shear 
stresses in the inner layers are considered. 
As the overstraining pressure comes on, 
this stress-strain curve runs similar to 
line OABEin Figure 6. If the pressure is 
taken up to E and then released, the line 
will first run back to F, but because the 
cylinder has suffered a permanent 
swelling, the still elastic outer layers will 
force the overstrained material into 
compression and so cause the shear stress 
to change sign, and the line will continue 
along the straight course to G. Then 

however, it will bend over until it reaches 
H, where HH' is the residual shear strain 
of the unloaded cylinder. When pres­
sure is reapplied, the shear curve will be­
gin from H and run through J to K 
where it will bend towards E. In ac­
cordance with the well known Bausch­
inger effect, the straight line range of the 
reversed stress, FG, will be much shorter 
than the recovery line, EF. 

It may be possible to eliminate the hys­
teresis if the pressure range is much less; 
for instance the recovery line, BG, in Fig­
ure 6 is such that it is only necessary to 
reverse the stress to the value given by D, 
where GD is still a straight line. Reap­
plication of pressure should then cause 
the shear stress to return along the 
straight line to B. 

The question whether a certain 
amount of hysteresis can be tolerated and 
if so, how much, is difficult for design­
ers. In general, cylinders not subjected 
to frequent cycles of pressure fluctuation 
can be safely operated with the zone of 
overstrained material extending half 
way through the wall. For pump and 
compressor cylinders, on the other hand, 
the situation is more difficult and very 
little experimental data is available. It 
is suggested that overstraining in such 
instances be strictly limited. 

Determining state of stress and strain 
in the wall of a cylinder subjected to au­
tofrettage is rather complicated if a rig­
orous analysis is demanded. Various 
solutions have been published, but those 
of Hill, Lee, and Tupper (7), and of 
MacGregor, Coffin, and Fisher (70) are 
perhaps the best known. A graphical 
approximation developed by Manning 
(74) is probably accurate enough for 
most practical problems. It involves the 
preparation of a chart which is really the 
plot of the shear stress, the radial stress, 
and the function, u/r, against the loga­
rithm of the unstrained radius for a thick 
cylinder, say for a diameter ratio of 10 to 
1, which is partially overstrained by in­
ternal pressure. Suppose that the bound­
ary between the elastic and plastic re­
gions is taken at a radius of 4 times the 
bore; the elastic part of the diagram is 
easily computed by the ordinary Lame 
analysis, knowing that the shear stress at 
the boundary has its limiting elastic 
value. The portion of the cylinder 
within the boundary is plastic and the 
stresses there must be computed from 
the shear strains in the manner already 
indicated. Thus, the area under the 
shear stress curve between any two ordi­
nates represents the difference in radial 
stress between the appropriate radii. 

The application of this procedure to a 
design problem is best illustrated by an 
example. Figure 7 is the chart for a 
chrome-molybdenum steel of 180,000 
pounds per sq. inch ultimate tensile 
strength, and when holding a pressure 
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Figure 6. Shear stress vs. shear strain 
in inner layers of overstrained cylinders 

of about 350,000 pounds per sq. inch 
the walls of this 10 to 1 cylinder have 
been overstrained outwards to a radius 
of about 4.2 times the bore, the material 
outside that being still elastic. It is 
also possible to follow what happens 
with cylinders of smaller diameter 
ratio. For instance, the intercept LK 
represents a diameter ratio of 2 to 1 
and the corresponding part of the radial 
stress curve, AB, would apply to a 
cylinder of this ratio, carrying an in­
ternal pressure of 135,000 and an ex-
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undergoing creep 

ternal pressure of 28,000 pounds per 
sq. inch. The resulting shear stress 
distribution is given by HG. and the 
deformations resulting while these pres­
sures act are given by the corresponding 
curves, the points E and F representing 
the values of u/r for the outside and in­
side surfaces, respectively. Because of 
the rapid change of the ratio, u/r, with 
radius, the curve for this is split into 
two parts with different scales. 

The part of the cylinder which will 
be overstrained by these pressures is 
represented by LM, while MK remains 
elastic. The same amount of overstrain­
ing will however be occasioned by an 
internal pressure of 107,000 pounds 
per sq. inch with no external pressure; 
shear stress will also be the same, but 
deformations must be corrected because 
the values represented by E and F cor- ' 
respond to the strains caused by this 
internal pressure, together with the si­
multaneous action of a uniform hydro­
static pressure of 28,000 pounds per sq. 
inch. On removal of this latter, as in 
the case where only the internal pressure 
is acting, the value of u/r must be in­
creased by 

~(1 - 2c) (23) 

where p. is this hydrostatic pressure 
(28,000 pounds per sq. inch). The 
tangential stresses are from Equation 
4, and if no hydrostatic (external) 
pressure is acting, the diagram of radial 
stress is given by ABC; hence .. the tan­
gential stress at the bore of this cylinder 
will be given by 2 X HL - AC. 

The residual stresses left when internal 
pressure is removed are found appro~i­
mately by subtracting from the stresses 
computed in the preceding paragraph, 
those that would result in a similar 
elastic cylinder holding the same pres-

sure, assuming it could do so without 
overstrain. 

The convenience of the logarithmic 
scale for the radii is now seen. Thus, 
to contain 80,000 pounds per sq. inch 
with a cylinder having a diameter ratio 
of 2, the procedure is to find an intercept 
of 2 on the horizontal scale which 
corresponds with an intercept of 80,000 
on the vertical. The dotted lines 
PRTSQ on the diagram show this; 
the region of overstrain in this case 
only extends to about 4.2/3.8, or for 
some 10% of the wall thickness. 

The practical results of this method, 
as applied to design and construction 
of laboratory scale apparatus, have been 
satisfactory, and much time and labor 
can be saved in the early stages of a 
high pressure project by investigating 
it in this way. 

Creep 

Where cylindrical vessels ~nd pipes 
are operated at temperatures sufficiently 
high to produce creep, design problems 
become more involved. Fortunately, 
however, they are capable of a restricted 
solution which is sufficient for most 
practical cases. In what follows only 
secondary creep-i.e., creep which pro­
ceeds at a constant rate-is dealt with, 
and it is assumed also that the tempera­
tures do not change, although they need 
not be the same at all points in the 
cylinder wall. Further assumptions are 
that the working pressure is maintained 
steadily, and that the stresses, strains, 
and temperatures are always symmetri­
cally distributed with respect to the 
axis. 

It is generally agreed, on the basis of 
reliable experiment;;, that any given 
stress system will always produce the 
same rates of creep in the same material. 
For the solution of the present problem, 
however, it is necessary to postulate 
that the converse is also true-namely, 
that where a particular rate of straining 
is imposed on a material. the same 
stresses will always be induced in it. 
It is difficult to see how this can be other­
wise, but its assumption often causes 
surprise. It appears to have been sug­
gested originally by Bailey (1), who also 
developed and tested the theory based 
upon it. 

Experiment shows that creep in a 
cylinder proceeds mainly in the cross 
section, the longitudinal strains being 
always small compared with those in 
the radial and tangential directions. 
Thus, creeping of a cylindrical wall under 
the influence of internal pressure is vir­
tually a constant area process, and the 
rates of creep at all point~ in the 'wall 
can therefore be expressed in terms of 
the creep at anyone point, say the bore, 
by simple geometry. If then the ap­
propriate relation between shear stress 
and creep rate is available, the shear 
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stress distribution across the wall can 
be derived, and thence by integration as 
in Equation 5, the presssure needed to 
give this rate of creep in the bore. 
Some trial and error may still be needed 
to deal with a particular case, but the 
problem is thus essentially solved. 

. On the assumption that rate of shear 
strain is governed by the maximum 
shear stress, the relation between shear 
stress and shear creep rate is easily 
derived from tensile creep rate. Then, 
if the .tangential strain' is e, and the 
radial strain e" the condition of constant 
area demands that 

(1 + e,) (1 + er ) - 1 = 0 (23) 

and, since the strains are always small 
in practical applications 

e, = -e, 

and the shear strain q is given by 

q = 2 e, 

(24) 

(25 ) 

Now if the radial shift after any time, 
t, is u, the condition of constant area 
demands that 

(26) 

to a reasonable degree of approximation. 
Moreover, since e, = u/r, it is evident 
that 

Differentiating with respect to time, 
keeping T constant then gives 

These relations together with the 
appropriate creep data permit the 
construction of a chart which will 
enable most problems of creep in a cyl­
inder of the particular material to be 
quickly solved. Figure 8 is an example 
derived from the tensile data of a stain­
less steel containing approximately 18% 
chromium, 8% nickel, and about 1 % 
of titanium, creeping at 6000 C. Like 
Figure 7, it represents a cylinder with its 
outside diameter 10 times the bore, and 
Equation 28 then shows that the creep 
rate at the bore will be 100 times what 
it is at the outside. A shear strain rate 
of 10--7 at the outside surface has been 
assumed, and this is equivalent to a 
linear strain rate of 6.67 X-1{)--s. The 
strain rates at all the other points can 
now be calculated; thence, having pre­
pared a shear stress VS. shear strain rate 
diagram from the tensile data, the ap­
propriate shear stresses can be found. (In 
deducing the relation between shear 
stress and shear strain rate from tensile 
data it is possible, as Shepherd (22) 
has shown, to take into account the 
third principle stress as is done in 
the von Mises hypothesis. The equiva­
lent shear stress is then 1/.y3 times the 
tensile stress.) Again, since the radii 



are plotted on a logarithmic scale, the 
area under the shear stress curve gives 
the radial stress. 

The usefulness of such a chart can 
be illustrated by an example. Suppose 
that a pressure of 6000 pounds per sq. 
inch at 6000 C. has to be contained with 
this material, and that the rate of creep 
on the outside surface must not exceed 
5 X 10-'1 inch per inch per hour. The 
chart shows that this creep rate is 
represented by point A which corre­
sponds to a radial stress represented by 
B. A perpendicular BC equal to the 
required pressure is then drawn, and a 
horizontal line through C to cut the 
stress curve again at D. The intercept 
CD gives the required diameter ratio 
which is just over 2 to 1. 

The rate of creep at the bore surface 
(point E) is 2.2 X 10-6, a value which 
might be considered too high. In a 
year, the bore diameter would have 
increased by nearly 2% and the walls 
would have become 11/2% thinner, 
which in turn would mean that for the 
same internal pressure, the stresses 
would rise and consequently also the 
creep rates. In fact, the whole process 
is one of gradually increasing rate in the 
direction of ultimate failure. This can 
be seen from the shear stresses repre­
sented by the portion HJ of the shear 
curve. The progress of creep as viewed 
on this chart, will consist of a movement 
of the ordinates HF and JG to the left 
in such a way that area HFGJ remains 
constant. 

Opinion still differs as to the best de­
sign criterion for thick cylinders subjected 
to creep conditions, but the chart should 
suffice for any of the normal design theo­
ries because all the stresses are obtainable 
from it. The radial and shear stresses 
can be read off directly, and the tan­
gential stress is obtained from Equation 
4, the actual stress at the bore in the 
example being given by 2 X HF -
BC. This could be used, for instance, 
with a time-rupture curve. 

For heat flow and temperature gradi­
ents the procedure is more involved. A 
set of curves relating shear stress and 
temperature for a number of constant 
creep rates has first to be drawn. From 
these, the shear stress is found at each 
point because creep rate is determined 
by the geometry of the system, and the 
temperature by the rate of heat flow 
and the thermal conductivity of the ma­
terial. A shear stress curve can thus be 
obtained which on integration gives the 
radial stress. Some trial and error is 
necessary, but the method is straight· 
forward. 

Fatigue 
Published data on fatigue resistance 

of the commoner engineering materials 
is immense, but unfortunately most of 
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Figure 9. Fatigue of nickel-chromium-molybdenum steel cylinders (J 7) 

it relates to the simpler kinds of loading 
such as reversed bending. Even when 
more complex systems of stress have 
been employed, one of the principal 
stresses is usually either zero or negligibly 
small, and few of the results are therefore 
applicable directly to the design of 
high pressure cylinders. 

The problem is undoubtedly serious, 
because material that forms the walls 
of pump and compressor cylinders is 
subjected to constant repetitions of pres­
sure while in service, and few engineers 
concerned with the operation and main­
tenance of such equipment have not 
experienced a serious breakdown due 
to fatigue. It is true that these troubles 
usually take place in the more compli­
cated shapes like cylinder heads and 
valve passages, but even the plain 
cylindrical walls provide their share 
of sudden and unpredictable failures. 

So far the only published results found 
are those of Morrison and others (17, 20) 
at the Bristol University Engineering 
Laboratories in England. In this work, 
cylindrical specimens of either 0.6- or l­
inch bore with various diameter ratios 
between 1.2 and 3.0 were tested by re­
ciprocating within . them a plunger, 
the internal space being filled with oil. 
With one material for which tests have 
been reported, the results seem remark­
ably consistent. This was an oil-hard­
ened and tempered alloy steel containing 
approximately 0.3% carbon, 2.5% 
nickel, 0.6% chromium, and 0.6% 
molybdenum with an ultimate tensile 
strength of 124,000 pounds per sq. inch; 
its limiting endurance when subjected 
to reversed torsion was ±43,500 pounds 
per sq. inch shear stress. Tests with 
cylinders under repetitions of pressure 
have shown relatively little scatter when 
the maximum shear stress is plotted 
against the number of repetitions to 
failure, but the maximum direct stress 
does not give nearly such consistent re-

sults. There is a well-defined fatigue 
limit at a shear stress of about 40,000 
pounds per sq. inch (Figure 9) but the 
stress range is from 0 to that figure, 
whereas in the torsion tests the range 
of shear stress is 87,000 pounds per sq. 
inch. A wider range of endurance 
when the loading reverses itself-i.e., 
when the mean stress is zero- would be 
expected, but hardly by a factor of 
more than 2 as was found in these 
results. 

It appears that the anomaly results 
partly from the particular type of stress 
distribution involved, and partly from 
the effect of fluid pressure on a highly 
stressed surface. In fact, as Parry (20) 
has shown, a considerable raising of the 
endurance limit appears to result from 
protecting the inner surface with an 
impermeable nonmetallic layer; in some 
cases, the increase was as much as 40%. 
Similar effects were also obtained by 
honing the bore immediately before 
testing. Since the specimens plotted 
in Figure 9 were all vacuum-annealed 
before testing, the slight cold-working 
introduced by honing, which would 
have been removed by the annealing, 
must have had a beneficial effect. 

Morrison has found that a 3% chrome 
steel of roughly the same static proper­
ties has given a similar endurance limit, 
and preliminary tests with a low-carbon 
mild steel suggest that its endurance 
as a cylinder will also be at a range of 
shear stress only about half that endured 
in reversed torsion. 

The cracks resulting from these tests 
were characteristic and different from 
those produced by static conditions 
of loading. In the latter, the fissure 
nearly always takes a spiral course across 
the wall, and it is preceded by consider­
able swelling and deformation (6). 
The fatigue cracks, on the other hand, 
were radial and appeared without warn­
ing. The development of this type of 
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failure was also interesting: Usually 
several separate cracks started at dif­
ferent points on the bore surface and 
spread gradually in planes parallel with 
the axis, until one of them reached 
the outside. The surfaces of these 
cracks were smooth and characteristic of 
fatigue. 

Summary 

In designing .cylindrical vessels, most 
problems can be met with fair cpnfidence, 
at least up to the pressure limit for the 
particular construction offered. But 
when dealing with fatigue the present 
resources are certainly not adequate, 
and the solution for creep conditions 
must be treated with considerable 
caution. 

For 'static conditions where there is 
no risk of creep, simple elastic cylinders 
can be made from material having a 
strength up to about 180,000 pounds 
per sq. inch ultimate tension, although 
this may be attainable only in compara­
tively small pieces of metal. With good 
grade alloy steels, however, it should be 
approachable, .and the material should 
still retain some ductility and shock re­
sistance. I t should be possible to 
operate with suitable safeguards to a 
pressure within a few per cent of that 
which causes . the beginnings of over­
strain. Also, if it is assumed that a 
diameter ratio of 3 to 1-Le. , wall 
thickness equal to bore diameter-is 
about the limit of reasonable proportions, 
the pressure ceiling for a simple elastic 
vessel is established at about 75,000 
pounds per sq. inch, or about 5000 atm. 

Using compound construction, the 
diameter ratio can be increased, prob­
ably to about 4.5 to 1. Ratio of pres­
sure to maximum shear stress can then be 
raised to about 1.9, but sdme safety 
factor is desirable and a working shear 
stress of 70,000 pounds per sq. inch 
seems a reasonable limit; the maximum 
working pressure could then be raised 
to 133,000 pounds or about 9000 atm. 
Autofrettage further extends the range 
without seriously increasing the un­
certainties and a pressure of 220,000 
pounds with a 4.5 to 1 cylinder should 
be possible, the region of overstrain 
then extending roughly to the geometric 
mean radius. That is, however, within 
75% of the ultimate bursting pressure. 
Normally, autofrettage in industry is 
not operated right up to the originally 
applied pressure but to about 80% of 
it; this would give a safe working pres­
sure of about 12,000 atm. 

These figures can perhaps be exceeded 
to a small extent-e.g., larger diameter 
ratios are possible, especially with some 
techniques of compound construction. 
But the limit for the condition of indefi­
nite durability can hardly exceed about 
15,000 atm. or about 225,000 pounds 
per sq. inch. To exceed this, special 

techniques are presumably needed, such 
as those used by Bridgman (3) where 
limitation of compound construction 
from rise of residual stresses is surmounted 
by slightly tapering the components and 
arranging for them to be pushed further 
into one another as the working pres­
sure comes on. In this way, the degree 
of shrinkage is increased while raising 
the pressure, and similarly decreased 
while lowering it. The problems in­
volved in using this, particularly on a 
larger than laboratory scale, are con­
siderable and lie outside the scope of 
this report. 

Steady pressures up to 15,000 atm. 
at moderate temperatures can be con­
tained in cylinders designed by well­
tried techniques. That this range can 
be very greatly exceeded is clear from 
the recent announcements by the General 
Electric Co. and by the Allmanna Sven­
ska Elektriska Aktiebolaget (AS.E.A) in 
Sweden of the synthesis of diamonds. 
On the other hand, possibilities for the 
chemical industry within the range con­
sidered here are considerable and little 
explored. 

The increased capital outlay required 
is often given as a reason for not pur­
suing schemes involving high pressures. 
Some increase in cost, of course, is 
unavoidable, but this is partly offset 
by such factors as smaller reaction 
volumes needed, higher yields, and 
quicker reactions. For example, when 
the Ziegler low pressure process for 
making polyethylene was introduced, 
it was suggested in some quarters that 
the product would be so much cheaper 
that the high pressure plants would 
have to go out of business. Nothing of 
the sort has happened, however, and 
it appears that the high pressure process 
is at least as economic as any of its 
more recent low pressure competitors. 
This ' example could be typical of other 
processes, and high pressure techniques 
are certain to assume increasing im­
portance for the chemical industry. 
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Nomenclature 

P applied pressure 
f direct stress 
e direct strain 
S shear stress 
q = shear strain 
r radius 
D diameter 

thickness of cylinder wall; also 
time in differential coefficients 

L o.ver-alliength of cylinder 
u = radial shift 
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11= shrinkage 
x, y = increase in external diameter and 

length, respectively 
K = over-all diameter ratio 
kl' k2, etc. = diameter ratio of compo-

nents 
A = safety factor 
n = number of components 
E = Young's modulus 
c = .Poisson's ratio 

Subscripts 

= internal 
o = external 
t = tangential 
r = radial 
a = axial 
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